Species identification and quality control of Tibetan medicines are an important part of its modernization studies, and they have important significance for ensuring the safety and effectiveness of Tibetan medicines in clinical application. In order to provide a reference for the modernization research of Tibetan medicines, this paper summarized the research progress of species identification, quality standards and quality evaluation of Tibetan medicines in the past 10 years. It also introduces the application examples of some new technologies and methods, such as DNA barcoding, infrared spectroscopy and 1H NMR-based metabolomics.; Copyright© by the Chinese Pharmaceutical Association.
To explore the medication regularity of Tibetan medicine in the treatment of spleen and stomach diseases, analyze the potential drug targets and interactions of the prescriptions, and reveal the mechanism of Tibetan medicine in the treatment of spleen and stomach diseases. The prescriptions in Tibetan medicine for treatment of spleen and stomach diseases were collected, and Traditional Chinese Medicine Inheritance Support System (TCMISS) was used to analyze the association rules between the herbs and discover the core herbs and new prescriptions. The integrated pharmacology platform V1.0 software was used to construct "herb-compound-target" network and investigate the interactions between various herbs and related pathways of Tibetan medicine Wuwei Shiliu powder in the treatment of spleen and stomach diseases. Among the 216 prescriptions of Tibetan medicine in the treatment of spleen and stomach diseases, pomegranate seed was used at a highest frequency (118 times), followed by white cardamom (107 times) and comatose (107 times). 12 new prescriptions were evolved by using the association rules (support>=34%, confidence>=0.85). 5 242 related drug targets and 20 related pathways were obtained from classic formula Wuwei Shiliu Powder (FDR<0.01). It was proposed that Tibetan medicine treatment for spleen and stomach diseases was mainly based on proliferation of "stomach fire" and the main drugs were for regulating Qi-flowing for strengthening spleen. The mechanism may be associated with regulation of digestive juice secretion, proton pump, mitochondria, regulation of intestinal digestion and immunity, the body's immunity to microorganisms function and other multiple targets and pathways to achieve the joint intervention.
The study aims at providing a new suitable way to promote artificial cultivation, solving the problem of resources increasingly endangered wild medicine, and protecting the wild resources of Tibetan medicine. The content of quercetin,kaempferol and isorhamnetin was determined by HPLC. The correlation between flavonoids components and ecological factors was analyzed using partial least-squares regression (PLSR). Based on Maxent model combining using ArcGIS software, suitable regionalization for H.rhamnoides subsp. sinensis was studied.The results showed that the difference of quercetin,kaempferol and isorhamnetin content in samples from different regions were obvious. The main factors effecting quercetin content accumulation were the altitude andthe average monthly precipitation in January and August. The main factors effecting kaempferol accumulation were the altitude andthe average monthly precipitation in the coldest quarter and December. The main factors effecting isorhamnetin accumulation were the average monthly precipitation in August, January and the coldest quarter.The regional distribution suitability index for H.rhamnoides subsp. sinensis was 0-0.708. The suitable area 590 500 km², accounting for 6.13% of the total area. The preferably suitable area was 552 500 km², accounting for 5.73% of the total area.The methods used in the study is simple and feasible, the result is reliable which provide a new approach for Tibetan medicine resources sustainable exploitation and utilization.
This study is aimed to establish a high-performance liquid chromatography (HPLC) method for simultaneous determination of skimmin, scopolin and umbelliferone in Saussurea hieracioides. Samples were analyzed on a Wondasil C18-WR column (4.6 mm x 250 mm, 5 microm) with methanol (A) and water containing 0.1% phosphate (B) as mobile phases for gradient elution at a flow rate of 1.0 mL x min(-1). The detection wavelength and column temperature were set at 325 nm and 35 degrees C, respectively, and the sample size was 10 microL. The results showed that skimmin, scopolin and umbelliferone were simultaneously achieved within 40 min under the above conditions. A good linearity was observed in the range of 0.18-5.6 microg (r = 1.000 0), 0.060-1.8 microg (r = 0.999 9), 0.032-0.97 microg (r = 0.999 8) for skimmin, scopolin and umbelliferone, respectively, with the average recoveries of 99.16% (RSD = 0.41%), 100.3% (RSD = 0.79%), 102.2% (RSD = 0.87%). The method is simple, accurate and reproducible and can be used for the quality control of S. hieracioides.
OBJECTIVE: To establish the HPLC fingerprint for Halenia elliptica herbs, a traditional Tibetan medicine, in order to study constituents contained in H. elliptica from different habitats and compare their differences.METHOD: HPLC analysis was made on a Welchrom-C18 (4.6 mm x 250 mm, 5 microm) with water and acetonitrile as mobile phase. The wavelength was detected as 265 nm, the flow rate was 1.0 mL x min(-1), and the column temperature was 40 degrees C. The software for chromatographic fingerprint was applied to analyze the similarity. And principal component analysis was conducted.
RESULT: Twelve common chromatographic peaks were identified by fingerprint, showing a low similarity in constituent and variety. The significant difference in the proportion between xanthones and aglycones in each batch of herbs indicated no notable correlation between constituent characteristics and geographic locations of habitats.
CONCLUSION: The method is so simple, exclusive, stable and highly repeatable that it can provide reference for identification and quality assessment of H. elliptica herbs.
The article discusses hypoxic pathophysiology and high-altitude medicine as of December 2012, with a focus on the traditional Tibetan medicine Duoxuekang and its potential prevention of high-altitude polycythemia (HAPC) induced by hypoxia. Topics include the oxygen-carrying capacity of human blood, reduction of red blood cell and hemoglobin counts, and serum erythropoietin (EPO). Additional information is presented on high-performance liquid chromatography (HPLC) methods and hypoxia-inducible factor (HIF)-1.
This study is aimed to explore the effect of nitrogen, phosphorus and potassium combined application on the active components of Rhodiola crenulata. R. crenulata was used as the research object, "3414" fertilization experiment were conducted with regular fertilization of NPK(N 60 kg·hm⁻², P₂O₅ 100 kg·hm⁻²,KCl 160 kg·hm⁻²) to study the effect of different rates of NPK fertilization on the total amount of 4 phenolic constituents of gallic acid, salidroside, tyrol and ethyl gallate through field test. The results show that the content of salidroside was higher in the treatment of N₁P₂K₁ and N₁P₂K₂, andthe total amount of four phenols was higher in the treatment of N₁P₂K₂ and N₂P₂K₂. The suitable level of nitrogen, phosphorus and potassium promoted the accumulation of the 4 kinds of phenols.The amount of fertilizer recommended by the three factor fertilizer effect equation,(N 0 kg·hm⁻²,P₂O₅ 150 kg·hm⁻²,KCl 31.71 kg·hm⁻²) obtained the highest content of salidroside, and it was 1.54%.(N 35.54 kg·hm⁻²,P₂O₅ 150 kg·hm⁻²,KCl 237.73 kg·hm⁻²)obtained the highest content of 4 kinds of phenolic compounds, and it was 1.93%. This study provides a reference for the standardization of artificial planting of endangered Tibetan medicine.
Fecal Tibetan medicines have a long history of application in China, with a good clinical efficacy. In order to promote the development and modernization of these medicines, we consulted ancient and modern Tibetan medicine literatures to collect and summarize the names, original species, natures, flavor, functions and processing methods of fecal Tibetan medicines. A total of 35 fecal Tibetan medicines were collected, such as Jiufen, Heibingpian, Langfen, Mafen, Goufen, Gezifen. The most commonly used medicines were Jiufen and Heibingpian. Both were mainly used for the treatment of indigestion, food abdominal distension, gastric ulcer, and other gastrointestinal diseases. At present, there are only a few studies on the active ingredients, pharmacodynamics and mechanism of action of these medicines. Therefore, further study shall be conducted. The regulation of gut microbiota may be a new way to evaluate the effectiveness of fecal Tibetan medicines and their mechanism of action.
To differentiate three medicinal Hippopahe species of seabuckthorn, a combined genetic and chemical identification method was established in this study. ITS2 and psbA-trnH were tested for identification of 3 species of seabuckthorn. Detection of the kimura 2-parameter (K2P) distance, the neighbor-joining (NJ) tree and the barcoding gap were used to assess the identification efficiency. ¹H-NMR based metabolic method was applied to acquire the profile of metabolites. PCA was used to analysis the metabolite data. The results indicated that DNA barcode combined ¹H-NMR based metabolic method is a powerful tool for the identification of 3 medicinal Hippopahe species of seabuckthorn. The finding demonstrated that different genetic variation and chemical constituents existed among 3 medicinal Hippopahe species of seabuckthorn. The combined identification method will improve the reliability of species discrimination and could be applicable to much other ethnic medicine which has various origins in China.
This study established an HPLC fingerprint of Tibetan medicine Shaji Gao from different habitats and lay a foundation for Shaji Gao varieties identification and preparation process. The chromatographic condition was as follow: Agilent zorbax SB-C18 (4.6 mm x 250 mm, 5 μm) eluted with the mobile phases of acetonitrile and 0.4% phosphoric acid water in gradient mode. The flow rate was 1.0 mL x min(-1), and the detection wavelength was set at 360 nm. The fingerprints of 15 batches Shaji Gao were carried out by similarity comparation, 7 chromatographic peaks were extracted as the common peaks of fingerprint, 3 peaks were identified, which were quercetin, kaempferol and isorhamnetin. The similarity degrees of 14 batches of samples were above 0.9 and 1 batch of samples was below 0.9. This is the first established fingerprint of Shaji Gao by using HPLC. This method has good precision, stability and repeatability that it could provide basis for quality control and evaluation of Shaji Gao.
The ITS2 barcode was used toidentify Tibetan medicine "Dida", and tosecure its quality and safety in medication. A total of 13 species, 151 experimental samples for the study from the Tibetan Plateau, including Gentianaceae Swertia, Halenia, Gentianopsis, Comastoma, Lomatogonium ITS2 sequences were amplified, and purified PCR products were sequenced. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner V3.7.1. The Kimura 2-Parameter (K2P) distances were calculated using MEGA 6.0. The neighbor-joining (NJ) phylogenetic trees were constructed. There are 31 haplotypes among 231 bp after alignment of all ITS2 sequence haplotypes, and the average G±C content of 61.40%. The NJ tree strongly supported that every species clustered into their own clade and high identification success rate, except that Swertia bifolia and Swertia wolfangiana could not be distinguished from each other based on the sequence divergences. DNA barcoding could be used as a fast and accurate identification method to distinguish Tibetan medicine "Dida" to ensure its safe use.
Hippophae rhamnoides subsp. sinensis Rousi, Hippophae gyantsensis (Rousi) Y. S. Lian, Hippophae neurocarpa S. W. Liu & T. N. He and Hippophae tibetana Schlechtendal are typically used under one name “Shaji”, to treat cardiovascular diseases and lung disorders in Tibetan medicine (TM). A complete set of infrared (IR) macro-fingerprints of these four Hippophae species should be characterized and compared simply, accurately, and in detail for identification. In the present study, tri-step IR spectroscopy, which included Fourier transform IR (FT-IR) spectroscopy, second derivative IR (SD-IR) spectroscopy and two-dimensional correlation IR (2D-IR) spectroscopy, was employed to discriminate the four Hippophae species and their corresponding extracts using different solvents. The relevant spectra exhibited the holistic chemical compositions and variations. Flavonoids, fatty acids and sugars were found to be the main chemical components. Characteristic peak positions, intensities and shapes derived from FT-IR, SD-IR and 2D-IR spectra provided valuable information for sample discrimination. Principal component analysis (PCA) of spectral differences was performed to illustrate the objective identification. Results showed that the species and their extracts can be clearly distinguished. Thus, a quick, precise and effective tri-step IR spectroscopy combined with PCA can be applied to identify and discriminate medicinal materials and their extracts in TM research.
This study was aimed to discuss and analyze the medication rules for prescriptions containing Pterocephali Herba in Chinese Medical Encyclopedia - Tibetan Medicine, Tibetan Medicine Prescription Modern Research and Clinical Application, and Interpretation of Common Tibetan Medicines based on the collection of Pterocephali Herba and by using the "Traditional Chinese Medicine Inheritance Support system(V2.0.1)",with the use of association rules, apriori algorithm and other data mining methods. The frequency of single drug, the frequency of drug combination, the association rule and the combination of core drugs were analyzed. Through collection of the prescriptions, a total of 215 prescriptions were included, involving a total of 376 herbs. Through the "frequency statistics", the prescriptions containing Pterocephali Herba were commonly used to treat cold fever, distemper virus and arthritis. The highest frequently (frequency≥15) used drugs were Corydalis Herba, Lagotidis Herba, and Gentianae Macrophyllae Radix, et al. The most frequently used drug combinations were "Pterocephali Herba, Corydalis Herba","Pterocephali Herba, Lagotidis Herba", and "Pterocephali Herba, Gentianae Macrophyllae Radix" et al. The prescriptions containing Pterocephali Herba were used to primarily treat disease for Tourette syndrome caused by the dampness heat toxin, fever, arthritis etc, such as pestilent toxicity, pneumonia and influenza, rheumatoid arthritis etc. The drugs in the prescriptions mostly had the effects of heat-clearing and detoxifying, anti-inflammatory, dispelling wind and dampness, often in compatible use with heat-clearing drugs. The drug use was concentrated and reflected the clear thought of prescription statutes.
Swertia mussotii Franch. and Swertia chirayita Buch.-Ham. have been commonly used under the same name "Zangyinchen" for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive (1)H NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative (1)H NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that S. mussotii had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas S. chirayita exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that (1)H NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two Swertia species, and can be used to verify the genuine origin of Zangyinchen.
Swertia mussotii Franch. and Swertia chirayita Buch.-Ham. have been commonly used under the same name 'Zangyinchen' for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive H-1 NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative H-1 NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that S. mussotii had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas S. chirayita exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that H-1 NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two Swertia species, and can be used to verify the genuine origin of Zangyinchen. (C) 2014 Elsevier B.V. All rights reserved.
<br>• A 1H NMR-based method is first developed to differentiate two <b>Swertia</b> species. • The two <b>Swertia</b> species exhibit significant differences in their metabolic profiling. • Nine metabolic markers responsible for the differences are screened out. • A qHNMR method is used for quantitative analysis of the discriminating metabolites. • The proposed 1H NMR-based metabolomics method is rapid, reliable and effective.<br><b>Swertia mussotii</b> Franch. and <b>Swertia chirayita</b> Buch.-Ham. have been commonly used under the same name “Zangyinchen” for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive 1H NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative 1H NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that <b>S. mussotii</b> had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas <b>S. chirayita</b> exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that 1H NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two <b>Swertia</b> species, and can be used to verify the genuine origin of Zangyinchen.
In this study, a computer-based network pharmacology approach was applied to investigate the potential mechanism and important components of Rhodiola crenulata in the protection of H9c2 cells against hydrogen peroxide (H₂O₂)-induced oxidative stress. The intestinal absorption liquid of R. crenulata enhanced the cell viability, maintained cell morphology and inhibited cell apoptosis in the H₂O₂-induced oxidative stress in H9c2. Then, computer-based network pharmacology was used to analyze the relevant mechanism. A total of 133 oxidative stress-related compounds were screened out; and 26 of them occupied the top 20%, and all of the compounds enriched in 43 oxidative stress-related key targets. Finally, a "compound-target-pathway-function" network was constructed. Based on the analysis of the network pharmacology, R. crenulata protected H9c2 cells against H₂O₂-induced oxidative stress probably by affecting apoptosis-related processes, such as cell death, nitric oxide metabolism, oxidative stress, mitochondrial mechanism, redox process, redox-related enzyme activty and other oxidative stress-related process. And salidroside, ethyl gallate and catechins, which were the main components of R. crenulata, played an important role in this process. Therefore, the potential mechanism and important components of R. crenulata revealed the protective effect on oxidative stress. This study shows a multi-component, multi-target and overall regulation effect of R. crenulata on the oxidative stress, and provides a reliable reference for subsequent systematic experimental studies for the pharmacodynamic material foundation and mechanism of action R. crenulata.
Liver disease is one of the most risk factors threatening human health. It is of great significance to find drugs that can treat liver diseases, especially for acute and chronic hepatitis, non-alcoholic fatty liver disease, and liver cancer. The search for drugs with good efficacy from traditional natural medicines has attracted more and more attention. Tibetan medicine, one of the China's traditional medical systems, has been widely used by the Tibetan people for the prevention and treatment of liver diseases for hundreds of years. The present paper summarized the natural Tibetan medicines that have been used in Tibetan traditional system of medicine to treat liver diseases by bibliographic investigation of 22 Tibetan medicine monographs and drug standards. One hundred and ninety three species including 181 plants, 7 animals, and 5 minerals were found to treat liver diseases in traditional Tibetan medicine system. The most frequently used species are Carthamus tinctorius, Brag-zhun, Swertia chirayita, Swertia mussotii, Halenia elliptica, Herpetospermum pedunculosum, and Phyllanthus emblica. Their names, families, medicinal parts, traditional uses, phytochemicals information, and pharmacological activities were described in detail. These natural medicines might be a valuable gift from the old Tibetan medicine to the world, and would be potential drug candidates for the treatment of liver diseases. Further studies are needed to prove their medicinal values in liver diseases treatment, identify bioactive compounds, elucidate the underlying mechanism of action, and clarify their side effects or toxicity with the help of modern phytochemical, pharmacological, metabonomics, and/or clinical trial methods.
ETHNOPHARMACOLOGICAL RELEVANCE: Rhodiola crenulata, a traditional Tibetan medicine, has shown promise in the treatment of hypobaric hypoxia (HH)-induced brain injury. However, the underlying mechanisms remain unclear. This study investigated the protective effects of R. crenulata aqueous extract (RCAE) on HH-induced brain injury in rats.MATERIALS AND METHODS: An animal model of high-altitude hypoxic brain injury was established in SD rats using an animal decompression chamber for 24 h. Serum and hippocampus levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG), and lactate dehydrogenase (LDH) were then determined using commercial biochemical kits. Neuron morphology and vitality were also evaluated using H&E and Nissl staining, and TUNEL staining was used to examine apoptosis. Gene and protein expression of HIF-1α, microRNA 210, ISCU1/2, COX10, Apaf-1, cleaved Caspase-3, Caspase-3, Bax, Bcl-2, and Cyto-c were determined by western blot, immunohistochemical and qRT-PCR analysis.
RESULTS: RCAE administration attenuated HH-induced brain injury as evidenced by decreased levels of MDA, LDH, and GSSG, increased GSH and SOD, improvements in hippocampus histopathological changes, increased cell vitality and ATP level, and reduced apoptotic cell numbers. RCAE treatment also enhanced HIF-1α, ISCU1/2, COX10, and Bcl-2 protein expression, while dramatically inhibiting expression of Apaf-1, Bax, Cyto-c, and cleaved Caspase-3. Treatment also increased gene levels of HIF-1α, microRNA 210, ISCU1/2, and COX10, and decreased Caspase-3 gene production.
CONCLUSIONS: RCAE attenuated HH-induced brain injury by regulating apoptosis and mitochondrial energy metabolism via the HIF-1α/microRNA 210/ISCU1/2 (COX10) signaling pathway.
This study is to develop an UPLC-PDA method for determination of 10 major components in Pterocephalus. The UPLC-PDA assay was performed on a Waters Acquity UPLCR BEH C₁₈(2.1 mm ×100 mm,1.7 μm), and the column temperature was at 30 ℃. The mobile phase consists of water containing 0.2% phosphoric acid (A) and acetonitrile (B) in gradient elution at a flow rate of 0.4 mL•min⁻¹. The detection wave length was set at 237 and 325 nm, and the injection volume was 1 μL in the UPLC system. The linear range of 10 detected compounds were good (r≥0.999 7), and the overall recoveries ranged from 96.30% to 103.0%, with the RSD ranging from 0.72% to 2.9%. The method was simple, accurate and reproducible, which can be used for the simultaneous determination of the content of ten major components in P. hookeri.
To evaluate the efficacy and safety associated with anti-hypoxia effect and establish the quality standard for Brassicea Radix extract, the investigations of acute toxicity and subacute toxicity were carried out to preliminarily appraise the toxicity, and the models of normal pressure hypoxia, acute cerebral ischemia and sodium nitrite poisoning in mice were used to evaluate the effect of enhancing anoxia endurance. Then according to the methods described in the Appendix of Chinese Pharmacopoeia (2010 edition), the sulfuric acid-phenol method was applied to determine the content of polysaccharide, and the water, ash and insoluble matter in water inspections were carried out and the control medicinal herb was identified with the samples by qualitative TLC. The results indicated that ① the toxic effects (LD₅₀) of mice was 56.73 g•kg⁻¹ by oral administration of Brassicea Radix extract, while Dm and Dn were respective 86.80 g•kg•d⁻¹ and 35.55 g•kg•d⁻¹;②the determined effective dosage of Brassicea Radix extract which could enhance anoxia endurance was 0.388 g•kg⁻¹•d⁻¹; ③ the methods of TLC and the content of polysaccharide were established. The method of quality control has been recorded in Sichuan Province Standard for Tibetan Medicine, which is reliable, accurate and simple, with good reproducibility. Meanwhile, given the prominent effect on anti-hypoxia and good safety, it provided important basis for clinic safe and effective usage and the development of health products.
DNA barcoding technique in combination with UFLC analysis technology was used to evaluate the quality of Tibetan medicine Pterocephalus hookeri from species identification and chemical qualitative and other aspects. Hybrid identification was established by DNA barcoding; UFLC-PDA was adopted to analyse fingerprint of different parts of Pterocephali Herba, and SPSS and Grey relation software were used for data analysis. The result showed that DNA barcoding is an accurate and reliable method in origin identification of Pterocephalus hookeri. The compounds in overground is more than underground by analysis of the different part fingerprint by UFLC. The genetic gene may be involved in the secondary metabolites of iridoid glycosides. Pertinence between gene and chemical component, as a new model established, could be suited for quality evaluation and resources protection.
This study is to establish an HPLC fingerprint and quantitative analysis of 3 components of Gyantse Seabuckthorn from different producing areas.The separation was developed on Shimadzu InertSustain C18column (4.6 mm × 250 mm,5 μm) by gradient elution with acetonitrile and 0.2% phosphoric acid water as mobile phase at a flow rate of 1.0 mL•min ⁻¹; the detection wavelength was set at 360 nm and column temperature was set at 30 ℃. The data calculation was performed with similarity evaluation system for chromatographic fingerprint of traditional Chinese medicine(Version 2004A).The fingerprints of 10 batches of Gyantse Seabuckthorn were carried out by similarity comparison, and 12 chromatographic peaks were extracted as the common peaks of fingerprint, of which three main active ingredients were successfully determined. This is the first established fingerprint and multi-component quantitative determination of Gyantse Seabuckthorn by using HPLC. This method has good precision stability and repeatability that could provide basis for quality control and evaluation of Gyantse Seabuckthorn.
Traditional Chinese medicine inheritance support system (TCMISS, V2.5) was used in this study to analyze the common medicines, frequency of medicine combination, core herbal combinations and new prescriptions for the treatment of plateau disease from the Four-Volume Medical Code, Mannose Herbal Mirror and other related books. TCMISS V2.5 software was used to construct the database of drug treatment for plateau disease. The frequency analysis and association rules apriori algorithm, improved mutual information method and other data mining methods were used to explore the law of drug compatibility. After the analysis of 531 prescriptions for plateau disease, 20 common symptoms of plateau disease were summarized such as insomnia and tinnitus. There were 539 kinds of herbs in the plateau disease prescriptions, including 33 kinds of herbs whose medicinal frequency>=50, such as Terminalia chebula and Myristica fragrans, and T. chebula had the highest medicinal frequency; 14 commonly used herbal combinations, and "Aucklandia lappa-T. chebula" had the highest frequency; 13 core herbal combinations were obtained after entropy clustering analysis, including 8 combinations of three herbs such as "Allium sativum-Carum carvi-Ferula sinkiangensis" and 5 combinations of four herbs such as "A. lappa-Aquilaria sinensis-Ewgewia caryophyllata-Myristica fragrans", and 5 new prescriptions such as "A. sativum-C. carvi-F. sinkiangensis-A. lappa-Choerospondia axillaris-A. sinensis-M. fragrans". The main symptom of "insomnia" was chosen to analyze the treatment of insomnia, and the core herbal combinations mainly including A. sinensis, T. chebula, and C. axillaris as well as the new prescriptions mainly containing Carthamus tinctorius, Meconopsis horridnla, and Punica granatum were obtained. The prescriptions for the treatment of plateau disease were clarified by TCM inheritance system, and the clinical prescription regularity and characteristics of the combination of common medicines were summarized, to provide reference and new ideas for its clinical application and development of new drug research.; Copyright© by the Chinese Pharmaceutical Association.
Pages |