Displaying 1 - 2 of 2
Although the processes that underlie sharing others’ emotions (empathy) and understanding others’ mental states (mentalizing, Theory of Mind) have received increasing attention, it is yet unclear how they relate to each other. For instance, are people who strongly empathize with others also more proficient in mentalizing? And (how) do the neural networks supporting empathy and mentalizing interact? Assessing both functions simultaneously in a large sample (N = 178), we show that people’s capacities to empathize and mentalize are independent, both on a behavioral and neural level. Thus, strong empathizers are not necessarily proficient mentalizers, arguing against a general capacity of social understanding. Second, we applied dynamic causal modeling to investigate how the neural networks underlying empathy and mentalizing are orchestrated in naturalistic social settings. Results reveal that in highly emotional situations, empathic sharing can inhibit mentalizing-related activity and thereby harm mentalizing performance. Taken together, our findings speak against a unitary construct of social understanding and suggest flexible interplay of distinct social functions.
Successful social interactions require both affect sharing (empathy) and understanding others' mental states (Theory of Mind, ToM). As these two functions have mostly been investigated in isolation, the specificity of the underlying neural networks and the relation of these networks to the respective behavioral indices could not be tested. Here, we present a novel fMRI paradigm (EmpaToM) that independently manipulates both empathy and ToM. Experiments 1a/b (N = 90) validated the task with established empathy and ToM paradigms on a behavioral and neural level. Experiment 2 (N = 178) employed the EmpaToM and revealed clearly separable neural networks including anterior insula for empathy and ventral temporoparietal junction for ToM. These distinct networks could be replicated in task-free resting state functional connectivity. Importantly, brain activity in these two networks specifically predicted the respective behavioral indices, that is, inter-individual differences in ToM related brain activity predicted inter-individual differences in ToM performance, but not empathic responding, and vice versa. Taken together, the validated EmpaToM allows separation of affective and cognitive routes to understanding others. It may thus benefit future clinical, developmental, and intervention studies on identifying selective impairments and improvement in specific components of social cognition.