Skip to main content Skip to search
Displaying 26 - 50 of 2451

Pages

  • Page
  • of 99
This past year has seen significant advances in our understanding of the physiology of emotion. Attention continues to focus on the amygdala and its interconnections with prefrontal cortical regions. New evidence underscores the importance of lateralization for emotion. There are also new findings on the physiological predictors of individual differences in emotional behavior and experience, and on the role of autonomic arousal in emotional memory.
Zotero Collections:

Little is known about the mechanisms through which mindfulness is related to psychological symptoms such as anxiety. One potential mechanism consists of individual differences in emotion-responding variables such as reactivity to aversive stimuli. The current research was designed to examine whether affective reactivity may act as a mechanism of mindfulness. Across two studies, an inverse relation between trait mindfulness (specifically, the Nonjudging of Inner Experience and Acting with Awareness factors of the Five-Facet Mindfulness Questionnaire) and chronic anxiety was partially mediated by affective reactivity, assessed with direct (self-report in study 1) and indirect (lexical decision task in study 2) measures. These results contribute to the understanding of the psychological mechanisms through which mindfulness works.

<p>Individual differences in emotional reactivity or affective style can be decomposed into more elementary constituents. Several separable of affective style are identified such as the threshold for reactivity, peak amplitude of response, the rise time to peak and the recovery time. latter two characteristics constitute components of affective chronometry The circuitry that underlies two fundamental forms of motivation and and withdrawal-related processes-is described. Data on differences in functional activity in certain components of these are next reviewed, with an emphasis on the nomological network of surrounding individual differences in asymmetric prefrontal The relevance of such differences for understanding the nature affective dysfunction in affective disorders is then considered. The ends by considering what the prefrontal cortex “does” in certain of affective style and highlights some of the important questions for future research.</p>
Zotero Tags:
Zotero Collections:

Considerable evidence exists to support an association between psychological states and immune function. However, the mechanisms by which such states are instantiated in the brain and influence the immune system are poorly understood. The present study investigated relations among physiological measures of affective style, psychological well being, and immune function. Negative and positive affect were elicited by using an autobiographical writing task. Electroencephalography and affect-modulated eye-blink startle were used to measure trait and state negative affect. Participants were vaccinated for influenza, and antibody titers after the vaccine were assayed to provide an in vivo measure of immune function. Higher levels of right-prefrontal electroencephalographic activation and greater magnitude of the startle reflex reliably predicted poorer immune response. These data support the hypothesis that individuals characterized by a more negative affective style mount a weaker immune response and therefore may be at greater risk for illness than those with a more positive affective style.
Zotero Tags:
Zotero Collections:

<p>The brain circuitry underlying emotion includes several territories of the prefrontal cortex (PFC), the amygdala, hippocampus, anterior cingulate, and related structures. In general, the PFC represents emotion in the absence of immediately present incentives and thus plays a crucial role in the anticipation of the future affective consequences of action, as well as in the persistence of emotion following the offset of an elicitor. The functions of the other structures in this circuit are also considered. Individual differences in this circuitry are reviewed, with an emphasis on asymmetries within the PFC and activation of the amygdala as 2 key components of affective style. These individual differences are related to both behavioral and biological variables associated with affective style and emotion regulation. Plasticity in this circuitry and its implications for transforming emotion and cultivating positive affect and resilience are considered.</p>

The brain circuitry underlying emotion includes several territories of the prefrontal cortex (PFC), the amygdala, hippocampus, anterior cingulate, and related structures. In general, the PFC represents emotion in the absence of immediately present incentives and thus plays a crucial role in the anticipation of the future affective consequences of action, as well as in the persistence of emotion following the offset of an elicitor. The functions of the other structures in this circuit are also considered. Individual differences in this circuitry are reviewed, with an emphasis on asymmetries within the PFC and activation of the amygdala as 2 key components of affective style. These individual differences are related to both behavioral and biological variables associated with affective style and emotion regulation. Plasticity in this circuitry and its implications for transforming emotion and cultivating positive affect and resilience are considered.
Zotero Collections:

<p>Twenty-six younger (ages 18–36 years) and 19 older (ages 60–88 years) healthy right-handed men and women were tested for interhemispheric transfer by using visual evoked potentials lo laterally presented checkerboards. Interhemispheric transfer time (IHTT) was estimated by subtracting latencies for both P100 and N160 peaks of the waveform contralateral to the stimulus from the waveform ipsilateral to the stimulus for homologous sites. The quality of interhemispheric transfer was estimated by comparing peak-to-peak amplitudes for homologous sites. IHTT did not change across age, but there was a suppression of the waveform over the indirectly stimulated hemisphere in the older participants. The significance of this finding for age-related changes in functions mediated by the corpus callosum is discussed.</p>
Zotero Collections:


Studies on aging and emotion suggest an increase in reported positive affect, a processing bias of positive over negative information, as well as increasingly adaptive regulation in response to negative events with advancing age. These findings imply that older individuals evaluate information differently, resulting in lowered reactivity to, and/or faster recovery from, negative information, while maintaining more positive responding to positive information. We examined this hypothesis in an ongoing study on Midlife in the US (MIDUS II) where emotional reactivity and recovery were assessed in a large number of respondents (N = 159) from a wide age range (36-84 years). We recorded eye-blink startle magnitudes and corrugator activity during and after the presentation of positive, neutral and negative pictures. The most robust age effect was found in response to neutral stimuli, where increasing age is associated with a decreased corrugator and eyeblink startle response to neutral stimuli. These data suggest that an age-related positivity effect does not essentially alter the response to emotion-laden information, but is reflected in a more positive interpretation of affectively ambiguous information. Furthermore, older women showed reduced corrugator recovery from negative pictures relative to the younger women and men, suggesting that an age-related prioritization of well-being is not necessarily reflected in adaptive regulation of negative affect.

Studies on aging and emotion suggest an increase in reported positive affect, a processing bias of positive over negative information, as well as increasingly adaptive regulation in response to negative events with advancing age. These findings imply that older individuals evaluate information differently, resulting in lowered reactivity to, and/or faster recovery from, negative information, while maintaining more positive responding to positive information. We examined this hypothesis in an ongoing study on Midlife in the US (MIDUS II) where emotional reactivity and recovery were assessed in a large number of respondents (N = 159) from a wide age range (36-84 years). We recorded eye-blink startle magnitudes and corrugator activity during and after the presentation of positive, neutral and negative pictures. The most robust age effect was found in response to neutral stimuli, where increasing age is associated with a decreased corrugator and eyeblink startle response to neutral stimuli. These data suggest that an age-related positivity effect does not essentially alter the response to emotion-laden information, but is reflected in a more positive interpretation of affectively ambiguous information. Furthermore, older women showed reduced corrugator recovery from negative pictures relative to the younger women and men, suggesting that an age-related prioritization of well-being is not necessarily reflected in adaptive regulation of negative affect.
Zotero Collections:

<p>We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white matter connectivity in a clinical population is determined.</p>
Zotero Tags:
Zotero Collections:

OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees. METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.

OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees. METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.
Zotero Collections:

Objective: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation appliedin a work environment with healthy employees. Methods: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. Results: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. Conclusions: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research. Key words: meditation, mindfulness, EEG, immune function, brain asymmetry, influenza vaccine.

<p>Objective: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation appliedin a work environment with healthy employees. Methods: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. Results: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. Conclusions: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research. Key words: meditation, mindfulness, EEG, immune function, brain asymmetry, influenza vaccine.</p>


Experientially opening oneself to pain rather than avoiding it is said to reduce the mind's tendency toward avoidance or anxiety which can further exacerbate the experience of pain. This is a central feature of mindfulness-based therapies. Little is known about the neural mechanisms of mindfulness on pain. During a meditation practice similar to mindfulness, functional magnetic resonance imaging was used in expert meditators (>10,000 h of practice) to dissociate neural activation patterns associated with pain, its anticipation, and habituation. Compared to novices, expert meditators reported equal pain intensity, but less unpleasantness. This difference was associated with enhanced activity in the dorsal anterior insula (aI), and the anterior mid-cingulate (aMCC) the so-called 'salience network', for experts during pain. This enhanced activity during pain was associated with reduced baseline activity before pain in these regions and the amygdala for experts only. The reduced baseline activation in left aI correlated with lifetime meditation experience. This pattern of low baseline activity coupled with high response in aIns and aMCC was associated with enhanced neural habituation in amygdala and pain-related regions before painful stimulation and in the pain-related regions during painful stimulation. These findings suggest that cultivating experiential openness down-regulates anticipatory representation of aversive events, and increases the recruitment of attentional resources during pain, which is associated with faster neural habituation.
Zotero Collections:

Experientially opening oneself to pain rather than avoiding it is said to reduce the mind's tendency toward avoidance or anxiety which can further exacerbate the experience of pain. This is a central feature of mindfulness-based therapies. Little is known about the neural mechanisms of mindfulness on pain. During a meditation practice similar to mindfulness, functional magnetic resonance imaging was used in expert meditators (> 10,000 h of practice) to dissociate neural activation patterns associated with pain, its anticipation, and habituation. Compared to novices, expert meditators reported equal pain intensity, but less unpleasantness. This difference was associated with enhanced activity in the dorsal anterior insula (aI), and the anterior mid-cingulate (aMCC) the so-called ‘salience network’, for experts during pain. This enhanced activity during pain was associated with reduced baseline activity before pain in these regions and the amygdala for experts only. The reduced baseline activation in left aI correlated with lifetime meditation experience. This pattern of low baseline activity coupled with high response in aIns and aMCC was associated with enhanced neural habituation in amygdala and pain-related regions before painful stimulation and in the pain-related regions during painful stimulation. These findings suggest that cultivating experiential openness down-regulates anticipatory representation of aversive events, and increases the recruitment of attentional resources during pain, which is associated with faster neural habituation.

Two New York Times–bestselling authors unveil new research showing what meditation can really do for the brain.In the last twenty years, meditation and mindfulness have gone from being kind of cool to becoming an omnipresent Band-Aid for fixing everything from your weight to your relationship to your achievement level. Unveiling here the kind of cutting-edge research that has made them giants in their fields, Daniel Goleman and Richard Davidson show us the truth about what meditation can really do for us, as well as exactly how to get the most out of it. Sweeping away common misconceptions and neuromythology to open readers’ eyes to the ways data has been distorted to sell mind-training methods, the authors demonstrate that beyond the pleasant states mental exercises can produce, the real payoffs are the lasting personality traits that can result. But short daily doses will not get us to the highest level of lasting positive change—even if we continue for years—without specific additions. More than sheer hours, we need smart practice, including crucial ingredients such as targeted feedback from a master teacher and a more spacious, less attached view of the self, all of which are missing in widespread versions of mind training. The authors also reveal the latest data from Davidson’s own lab that point to a new methodology for developing a broader array of mind-training methods with larger implications for how we can derive the greatest benefits from the practice. Exciting, compelling, and grounded in new research, this is one of those rare books that has the power to change us at the deepest level.

Two New York Times–bestselling authors unveil new research showing what meditation can really do for the brain.In the last twenty years, meditation and mindfulness have gone from being kind of cool to becoming an omnipresent Band-Aid for fixing everything from your weight to your relationship to your achievement level. Unveiling here the kind of cutting-edge research that has made them giants in their fields, Daniel Goleman and Richard Davidson show us the truth about what meditation can really do for us, as well as exactly how to get the most out of it. Sweeping away common misconceptions and neuromythology to open readers’ eyes to the ways data has been distorted to sell mind-training methods, the authors demonstrate that beyond the pleasant states mental exercises can produce, the real payoffs are the lasting personality traits that can result. But short daily doses will not get us to the highest level of lasting positive change—even if we continue for years—without specific additions. More than sheer hours, we need smart practice, including crucial ingredients such as targeted feedback from a master teacher and a more spacious, less attached view of the self, all of which are missing in widespread versions of mind training. The authors also reveal the latest data from Davidson’s own lab that point to a new methodology for developing a broader array of mind-training methods with larger implications for how we can derive the greatest benefits from the practice. Exciting, compelling, and grounded in new research, this is one of those rare books that has the power to change us at the deepest level.

The primary taste cortex consists of the insula and operculum. Previous work has indicated that neurons in the primary taste cortex respond solely to sensory input from taste receptors and lingual somatosensory receptors. Using functional magnetic resonance imaging, we show here that expectancy modulates these neural responses in humans. When subjects were led to believe that a highly aversive bitter taste would be less distasteful than it actually was, they reported it to be less aversive than when they had accurate information about the taste and, moreover, the primary taste cortex was less strongly activated. In addition, the activation of the right insula and operculum tracked online ratings of the aversiveness for each taste. Such expectancy-driven modulation of primary sensory cortex may affect perceptions of external events.
Zotero Collections:

The ancient procedure of Kriya yoga is compared here to Dr. Tse-kong young's modern alternative to the artificial kidney. Both methods are basically the same and the treatment costs almost nothing.

Many alternative health practices are gaining popularity in traditional medical centers throughout the country. However, social workers and allied health professionals are rarely educated in these practices. The collaborative pilot research project discussed in this article involved community health providers and a state university department of social work. The project, conducted in rural health clinics, introduced an approach to skillful, safe, and appropriate use of touch synthesized with an awareness of the breath for giver and receiver to a group of Mexican Americans diagnosed with diabetes and their families. This alternative health practice holds promise for reducing stress, promoting health and well-being, and building relationships and warrants further study.

Many alternative health practices are gaining popularity in traditional medical centers throughout the country. However, social workers and allied health professionals are rarely educated in these practices. The collaborative pilot research project discussed in this article involved community health providers and a state university department of social work. The project, conducted in rural health clinics, introduced an approach to skillful, safe, and appropriate use of touch synthesized with an awareness of the breath for giver and receiver to a group of Mexican Americans diagnosed with diabetes and their families. This alternative health practice holds promise for reducing stress, promoting health and well-being, and building relationships and warrants further study.

Pages

  • Page
  • of 99