Functional neuroimaging studies have implicated the fusiform gyri (FG) in structural encoding of faces, while event-related potential (ERP) and magnetoencephalography studies have shown that such encoding occurs approximately 170 ms poststimulus. Behavioral and functional neuroimaging studies suggest that processes involved in face recognition may be strongly modulated by socially relevant information conveyed by faces. To test the hypothesis that affective information indeed modulates early stages of face processing, ERPs were recorded to individually assessed liked, neutral, and disliked faces and checkerboard-reversal stimuli. At the N170 latency, the cortical three-dimensional distribution of current density was computed in stereotactic space using a tomographic source localization technique. Mean activity was extracted from the FG, defined by structure-probability maps, and a meta-cluster delineated by the coordinates of the voxel with the strongest face-sensitive response from five published functional magnetic resonance imaging studies. In the FG, approximately 160 ms poststimulus, liked faces elicited stronger activation than disliked and neutral faces and checkerboard-reversal stimuli. Further, confirming recent results, affect-modulated brain electrical activity started very early in the human brain (approximately 112 ms). These findings suggest that affective features conveyed by faces modulate structural face encoding. Behavioral results from an independent study revealed that the stimuli were not biased toward particular facial expressions and confirmed that liked faces were rated as more attractive. Increased FG activation for liked faces may thus be interpreted as reflecting enhanced attention due to their saliency.
Zotero Collections:
OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees.
METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine.
RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine.
CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.
Zotero Collections:
- Contemplation by Applied Subject,
- Psychiatry and Contemplation,
- Medical Research on Contemplative Practice,
- Mindfulness-Based Stress Reduction / Cognitive Therapy,
- Psychotherapy and Contemplation,
- Health Care and Contemplation,
- Neuroscience and Contemplation,
- Physiology and Contemplation,
- Science and Contemplation
The primary taste cortex consists of the insula and operculum. Previous work has indicated that neurons in the primary taste cortex respond solely to sensory input from taste receptors and lingual somatosensory receptors. Using functional magnetic resonance imaging, we show here that expectancy modulates these neural responses in humans. When subjects were led to believe that a highly aversive bitter taste would be less distasteful than it actually was, they reported it to be less aversive than when they had accurate information about the taste and, moreover, the primary taste cortex was less strongly activated. In addition, the activation of the right insula and operculum tracked online ratings of the aversiveness for each taste. Such expectancy-driven modulation of primary sensory cortex may affect perceptions of external events.
Zotero Collections:
Despite growing evidence on the neural bases of emotion regulation, little is known about the mechanisms underlying individual differences in cognitive regulation of negative emotion, and few studies have used objective measures to quantify regulatory success. Using a trait-like psychophysiological measure of emotion regulation, corrugator electromyography, we obtained an objective index of the ability to cognitively reappraise negative emotion in 56 healthy men (Session 1), who returned 1.3 years later to perform the same regulation task using fMRI (Session 2). Results indicated that the corrugator measure of regulatory skill predicted amygdala-prefrontal functional connectivity. Individuals with greater ability to down-regulate negative emotion as indexed by corrugator at Session 1 showed not only greater amygdala attenuation but also greater inverse connectivity between the amygdala and several sectors of the prefrontal cortex while down-regulating negative emotion at Session 2. Our results demonstrate that individual differences in emotion regulation are stable over time and underscore the important role of amygdala-prefrontal coupling for successful regulation of negative emotion.
Zotero Collections:
Anxious temperament (AT) in human and non-human primates is a trait-like phenotype evident early in life that is characterized by increased behavioural and physiological reactivity to mildly threatening stimuli. Studies in children demonstrate that AT is an important risk factor for the later development of anxiety disorders, depression and comorbid substance abuse. Despite its importance as an early predictor of psychopathology, little is known about the factors that predispose vulnerable children to develop AT and the brain systems that underlie its expression. To characterize the neural circuitry associated with AT and the extent to which the function of this circuit is heritable, we studied a large sample of rhesus monkeys phenotyped for AT. Using 238 young monkeys from a multigenerational single-family pedigree, we simultaneously assessed brain metabolic activity and AT while monkeys were exposed to the relevant ethological condition that elicits the phenotype. High-resolution (18)F-labelled deoxyglucose positron-emission tomography (FDG-PET) was selected as the imaging modality because it provides semi-quantitative indices of absolute glucose metabolic rate, allows for simultaneous measurement of behaviour and brain activity, and has a time course suited for assessing temperament-associated sustained brain responses. Here we demonstrate that the central nucleus region of the amygdala and the anterior hippocampus are key components of the neural circuit predictive of AT. We also show significant heritability of the AT phenotype by using quantitative genetic analysis. Additionally, using voxelwise analyses, we reveal significant heritability of metabolic activity in AT-associated hippocampal regions. However, activity in the amygdala region predictive of AT is not significantly heritable. Furthermore, the heritabilities of the hippocampal and amygdala regions significantly differ from each other. Even though these structures are closely linked, the results suggest differential influences of genes and environment on how these brain regions mediate AT and the ongoing risk of developing anxiety and depression.
Zotero Collections:
Although the co-occurrence of negative affect and pain is well recognized, the mechanism underlying their association is unclear. To examine whether a common self-regulatory ability impacts the experience of both emotion and pain, we integrated neuroimaging, behavioral, and physiological measures obtained from three assessments separated by substantial temporal intervals. Our results demonstrated that individual differences in emotion regulation ability, as indexed by an objective measure of emotional state, corrugator electromyography, predicted self-reported success while regulating pain. In both emotion and pain paradigms, the amygdala reflected regulatory success. Notably, we found that greater emotion regulation success was associated with greater change of amygdalar activity following pain regulation. Furthermore, individual differences in degree of amygdalar change following emotion regulation were a strong predictor of pain regulation success, as well as of the degree of amygdalar engagement following pain regulation. These findings suggest that common individual differences in emotion and pain regulatory success are reflected in a neural structure known to contribute to appraisal processes.
Zotero Collections:
The amygdalae are important, if not critical, brain regions for many affective, attentional and memorial processes, and dysfunction of the amygdalae has been a consistent finding in the study of clinical depression. Theoretical models of the functional neuroanatomy of both normal and psychopathological affective processes which posit cortical hemispheric specialization of functions have been supported by both lesion and functional neuroimaging studies in humans. Results from human neuroimaging studies in support of amygdalar hemispheric specialization are inconsistent. However, recent results from human lesion studies are consistent with hemispheric specialization. An important, yet largely ignored, feature of the amygdalae in the primate brain--derived from both neuroanatomical and electrophysiological data--is that there are virtually no direct interhemispheric connections via the anterior commissure (AC). This feature stands in stark contrast to that of the rodent brain wherein virtually all amygdalar nuclei have direct interhemispheric connections. We propose this feature of the primate brain, in particular the human brain, is a result of influences from frontocortical hemispheric specialization which have developed over the course of primate brain evolution. Results consistent with this notion were obtained by examining the nature of human amygdalar interhemispheric connectivity using both functional magnetic resonance imaging (FMRI) and positron emission tomography (PET). We found modest evidence of amygdalar interhemispheric functional connectivity in the non-depressed brain, whereas there was strong evidence of functional connectivity in the depressed brain. We interpret and discuss the nature of this connectivity in the depressed brain in the context of dysfunctional frontocortical-amygdalar interactions which accompany clinical depression.
Zotero Collections:
BACKGROUND: Autism is a syndrome of unknown cause, marked by abnormal development of social behavior. Attempts to link pathological features of the amygdala, which plays a key role in emotional processing, to autism have shown little consensus.
OBJECTIVE: To evaluate amygdala volume in individuals with autism spectrum disorders and its relationship to laboratory measures of social behavior to examine whether variations in amygdala structure relate to symptom severity.
DESIGN: We conducted 2 cross-sectional studies of amygdala volume, measured blind to diagnosis on high-resolution, anatomical magnetic resonance images. Participants were 54 males aged 8 to 25 years, including 23 with autism and 5 with Asperger syndrome or pervasive developmental disorder not otherwise specified, recruited and evaluated at an academic center for developmental disabilities and 26 age- and sex-matched community volunteers. The Autism Diagnostic Interview-Revised was used to confirm diagnoses and to validate relationships with laboratory measures of social function.
MAIN OUTCOME MEASURES: Amygdala volume, judgment of facial expressions, and eye tracking.
RESULTS: In study 1, individuals with autism who had small amygdalae were slowest to distinguish emotional from neutral expressions (P=.02) and showed least fixation of eye regions (P=.04). These same individuals were most socially impaired in early childhood, as reported on the Autism Diagnostic Interview-Revised (P<.04). Study 2 showed smaller amygdalae in individuals with autism than in control subjects (P=.03) and group differences in the relation between amygdala volume and age. Study 2 also replicated findings of more gaze avoidance and childhood impairment in participants with autism with the smallest amygdalae. Across the combined sample, severity of social deficits interacted with age to predict different patterns of amygdala development in autism (P=.047).
CONCLUSIONS: These findings best support a model of amygdala hyperactivity that could explain most volumetric findings in autism. Further psychophysiological and histopathological studies are indicated to confirm these findings.
Zotero Collections:
OBJECTIVE: The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response.
METHOD: Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine.
RESULTS: Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms.
CONCLUSIONS: These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.
Zotero Collections:
Many of us go through our daily lives on autopilot, not fully aware of our conscious experiences. In a discussion moderated by Steve Paulson, executive producer and host of To the Best of Our Knowledge, neuroscientists Richard Davidson and Amishi Jha and clinical mindfulness expert Jon Kabat-Zinn explore the role of consciousness in mental and physical health, how we can train our minds to be more flexible and adaptable, and cutting-edge neuroscience findings about the transformation of consciousness through mindfulness and contemplative practice. The following is an edited transcript of the discussion that occurred February 6, 2013, 7:00-8:15 PM, at the New York Academy of Sciences in New York City.
Many of us go through our daily lives on autopilot, not fully aware of our conscious experiences. In a discussion moderated by Steve Paulson, executive producer and host of To the Best of Our Knowledge, neuroscientists Richard Davidson and Amishi Jha and clinical mindfulness expert Jon Kabat-Zinn explore the role of consciousness in mental and physical health, how we can train our minds to be more flexible and adaptable, and cutting-edge neuroscience findings about the transformation of consciousness through mindfulness and contemplative practice. The following is an edited transcript of the discussion that occurred February 6, 2013, 7:00-8:15 PM, at the New York Academy of Sciences in New York City.
Zotero Collections:
Background
Early life stress (ELS) can compromise development, with higher amounts of adversity linked to behavioral problems. To understand this linkage, a growing body of research has examined two brain regions involved with socioemotional functioning—amygdala and hippocampus. Yet empirical studies have reported increases, decreases, and no differences within human and nonhuman animal samples exposed to different forms of ELS. This divergence in findings may stem from methodological factors, nonlinear effects of ELS, or both.
Methods
We completed rigorous hand-tracing of the amygdala and hippocampus in three samples of children who experienced different forms of ELS (i.e., physical abuse, early neglect, or low socioeconomic status). Interviews were also conducted with children and their parents or guardians to collect data about cumulative life stress. The same data were also collected in a fourth sample of comparison children who had not experienced any of these forms of ELS.
Results
Smaller amygdala volumes were found for children exposed to these different forms of ELS. Smaller hippocampal volumes were also noted for children who were physically abused or from low socioeconomic status households. Smaller amygdala and hippocampal volumes were also associated with greater cumulative stress exposure and behavioral problems. Hippocampal volumes partially mediated the relationship between ELS and greater behavioral problems.
Conclusions
This study suggests ELS may shape the development of brain areas involved with emotion processing and regulation in similar ways. Differences in the amygdala and hippocampus may be a shared diathesis for later negative outcomes related to ELS.
Zotero Collections:
<p>Mindfulness is an attribute of consciousness long believed to promote well-being. This research provides a theoretical and empirical examination of the role of mindfulness in psychological well-being. The development and psychometric properties of the dispositional Mindful Attention Awareness Scale (MAAS) are described. Correlational, quasi-experimental, and laboratory studies then show that the MAAS measures a unique quality of consciousness that is related to a variety of well-being constructs, that differentiates mindfulness practitioners from others, and that is associated with enhanced self-awareness. An experience-sampling study shows that both dispositional and state mindfulness predict self-regulated behavior and positive emotional states. Finally, a clinical intervention study with cancer patients demonstrates that increases in mindfulness over time relate to declines in mood disturbance and stress.</p>
Zotero Collections:
The brain and the cardiovascular system influence each other during the processing of emotion. The study of the interactions of these systems during emotion regulation has been limited in human functional neuroimaging, despite its potential importance for physical health. We have previously reported that mental expertise in cultivation of compassion alters the activation of circuits linked with empathy and theory of mind in response to emotional stimuli. Guided by the finding that heart rate increases more during blocks of compassion meditation than neutral states, especially for experts, we examined the interaction between state (compassion vs. neutral) and group (novice, expert) on the relation between heart rate and BOLD signal during presentation of emotional sounds presented during each state. Our findings revealed that BOLD signal in the right middle insula showed a significant association with heart rate (HR) across state and group. This association was stronger in the left middle/posterior insula when experts were compared to novices. The positive coupling of HR and BOLD was higher within the compassion state than within the neutral state in the dorsal anterior cingulate cortex for both groups, underlining the role of this region in the modulation of bodily arousal states. This state effect was stronger for experts than novices in somatosensory cortices and the right inferior parietal lobule (group by state interaction). These data confirm that compassion enhances the emotional and somatosensory brain representations of others' emotions, and that this effect is modulated by expertise. Future studies are needed to further investigate the impact of compassion training on these circuits.
Zotero Collections:
Fragile X syndrome (FXS) is the most commonly known genetic disorder associated with autism spectrum disorder (ASD). Overlapping features in these populations include gaze aversion, communication deficits, and social withdrawal. Although the association between FXS and ASD has been well documented at the behavioral level, the underlying neural mechanisms associated with the social/emotional deficits in these groups remain unclear. We collected functional brain images and eye-gaze fixations from 9 individuals with FXS and 14 individuals with idiopathic ASD, as well as 15 typically developing (TD) individuals, while they performed a facial-emotion discrimination task. The FXS group showed a similar yet less aberrant pattern of gaze fixations compared with the ASD group. The FXS group also showed fusiform gyrus (FG) hypoactivation compared with the TD control group. Activation in FG was strongly and positively associated with average eye fixation and negatively associated with ASD characteristics in the FXS group. The FXS group displayed significantly greater activation than both the TD control and ASD groups in the left hippocampus (HIPP), left superior temporal gyrus (STG), right insula (INS), and left postcentral gyrus (PCG). These group differences in brain activation are important as they suggest unique underlying face-processing neural circuitry in FXS versus idiopathic ASD, largely supporting the hypothesis that ASD characteristics in FXS and idiopathic ASD reflect partially divergent impairments at the neural level, at least in FXS individuals without a co-morbid diagnosis of ASD.
Zotero Collections:
The experience of aversion is shaped by multiple physiological and psychological factors including one's expectations. Recent work has shown that expectancy manipulation can alter perceptions of aversive events and concomitant brain activation. Accruing evidence indicates a primary role of altered expectancies in the placebo effect. Here, we probed the mechanism by which expectation attenuates sensory taste transmission by examining how brain areas activated by misleading information during an expectancy period modulate insula and amygdala activation to a highly aversive bitter taste. In a rapid event-related fMRI design, we showed that activations in the rostral anterior cingulate cortex (rACC), orbitofrontal cortex (OFC), and dorsolateral prefrontal cortex to a misleading cue that the taste would be mildly aversive predicted decreases in insula and amygdala activation to the highly aversive taste. OFC and rACC activation to the misleading cue were also associated with less aversive ratings of that taste. Additional analyses revealed consistent results demonstrating functional connectivity among the OFC, rACC, and insula. Altering expectancies of upcoming aversive events are shown here to depend on robust functional associations among brain regions implicated in prior work on the placebo effect.
Zotero Collections:
Biological systems are particularly prone to variation, and the authors argue that such variation must be regarded as important data in its own right. The authors describe a method in which individual differences are studied within the framework of a general theory of the population as a whole and illustrate how this method can be used to address three types of issues: the nature of the mechanisms that give rise to a specific ability, such as mental imagery; the role of psychological or biological mediators of environmental challenges, such as the biological bases for differences in dispositional mood; and the existence of processes that have nonadditive effects with behavioral and physiological variables, such as factors that modulate the response to stress and its effects on the immune response.
Zotero Collections:
Despite the call for multilevel observation of negative affect, including multiple physiological systems, too little empirical research has been conducted in infants and young children, and physiology-affect associations are not consistently reported. We examined changes in heart rate, respiratory sinus arrhythmia, and preejection period in 24-month-olds across four increasingly challenging, emotion-eliciting tasks. We predicted that changes in cardiac reactivity would be systematically related to changes in negative affect. Results largely support the predictions with one important exception. With increasing distress across the tasks, HR increased and RSA decreased. However, no significant changes in PEP were observed. HR was associated with negative affect during all tasks, and changes in HR were related to changes in negative affect. PEP and negative affect were associated, but only marginally so. Within-subject analyses confirmed the predicted associations. Finally, the associations between physiology and negative affect were different for boys and girls. We discuss these results in the context of implications for future research on cardiac-affect associations in young children.
Zotero Collections:
The anterior medial prefrontal (AMPFC) and retrosplenial (RSC) cortices are active during self-referential decision-making tasks such as when participants appraise traits and abilities, or current affect. Other appraisal tasks requiring an evaluative decision or mental representation, such as theory of mind and perspective-taking tasks, also involve these regions. In many instances, these types of decisions involve a subjective opinion or preference, but also a degree of ambiguity in the decision, rather than a strictly veridical response. However, this ambiguity is generally not controlled for in studies that examine self-referential decision-making. In this functional magnetic resonance imaging experiment with 17 healthy adults, we examined neural processes associated with subjective decision-making with and without an overt self-referential component. The task required subjective decisions about colors-regarding self-preference (internal subjective decision) or color similarity (external subjective decision) under conditions where there was no objectively correct response. Results indicated greater activation in the AMPFC, RSC, and caudate nucleus during internal subjective decision-making. The findings suggest that self-referential processing, rather than subjective judgments among ambiguous response alternatives, accounted for the AMPFC and RSC response.
Zotero Collections:
This article reports the development of the 54-item College Chronic Life Stress Survey (CCLSS) and its use in prospective studies of the relationship between chronic stress and psychological distress in college students. Study 1 demonstrated the CCLSS's test-retest reliability and concurrent validity (best friend corroboration of specific items). Study 1 also revealed differential endorsement of specific CCLSS items as a function of gender and year in college. Study 2 cross-sectional and prospective analyses showed that CCLSS chronic stress was a significant predictor of distress. Study 3 cross-sectional analyses showed that the CCLSS effects withstood the statistical control of neuroticism. The findings suggest the value of future research on chronic stress and demonstrate the utility of the CCLSS in studies with college students.
Zotero Collections:
Previous research indicates that lower-class individuals experience elevated negative emotions as compared with their upper-class counterparts. We examine how the environments of lower-class individuals can also promote greater compassionate responding-that is, concern for the suffering or well-being of others. In the present research, we investigate class-based differences in dispositional compassion and its activation in situations wherein others are suffering. Across studies, relative to their upper-class counterparts, lower-class individuals reported elevated dispositional compassion (Study 1), as well as greater self-reported compassion during a compassion-inducing video (Study 2) and for another person during a social interaction (Study 3). Lower-class individuals also exhibited heart rate deceleration-a physiological response associated with orienting to the social environment and engaging with others-during the compassion-inducing video (Study 2). We discuss a potential mechanism of class-based influences on compassion, whereby lower-class individuals' are more attuned to others' distress, relative to their upper-class counterparts.
Zotero Collections:
Chaotic conditions are a prevalent and threatening feature of social life. Five studies examined whether social class underlies divergent responses to perceptions of chaos in one's social environments and outcomes. The authors hypothesized that when coping with perceptions of chaos, lower class individuals tend to prioritize community, relative to upper class individuals, who instead tend to prioritize material wealth. Consistent with these predictions, when personally confronting chaos, lower class individuals were more communally oriented (Study 1), more connected with their community (Study 2), and more likely to volunteer for a community-building project (Study 3), compared to upper class individuals. In contrast, perceptions of chaos caused upper class individuals to express greater reliance on wealth (Study 4) and prefer financial gain over membership in a close-knit community (Study 5), relative to lower class individuals. These findings suggest that social class shapes how people respond to perceptions of chaos and cope with its threatening consequences.
Zotero Collections:
First described for use in mapping the human visual cortex in 1991, functional magnetic resonance imaging (fMRI) is based on blood-oxygen level dependent (BOLD) changes in cortical regions that occur during specific tasks. Typically, an overabundance of oxygenated (arterial) blood is supplied during activation of brain areas. Consequently, the venous outflow from the activated areas contains a higher concentration of oxyhemoglobin, which changes the paramagnetic properties of the tissue that can be detected during a T2-star acquisition. fMRI data can be acquired in response to specific tasks or in the resting state. fMRI has been widely applied to studying physiologic and pathophysiologic diseases of the brain. This review will discuss the most common current clinical applications of fMRI as well as emerging directions.
Zotero Collections:
Functional neuroimaging research has demonstrated that retrieving information about object-associated colors activates the left fusiform gyrus in posterior temporal cortex. Although regions near the fusiform have previously been implicated in color perception, it remains unclear whether color knowledge retrieval actually activates the color perception system. Evidence to this effect would be particularly strong if color perception cortex was activated by color knowledge retrieval triggered strictly with linguistic stimuli. To address this question, subjects performed two tasks while undergoing fMRI. First, subjects performed a property verification task using only words to assess conceptual knowledge. On each trial, subjects verified whether a named color or motor property was true of a named object (e.g., TAXI-yellow, HAIR-combed). Next, subjects performed a color perception task. A region of the left fusiform gyrus that was highly responsive during color perception also showed greater activity for retrieving color than motor property knowledge. These data provide the first evidence for a direct overlap in the neural bases of color perception and stored information about object-associated color, and they significantly add to accumulating evidence that conceptual knowledge is grounded in the brain's modality-specific systems.
Zotero Collections:
Motion correction of fMRI data is a widely used step prior to data analysis. In this study, a comparison of the motion correction tools provided by several leading fMRI analysis software packages was performed, including AFNI, AIR, BrainVoyager, FSL, and SPM2. Comparisons were performed using data from typical human studies as well as phantom data. The identical reconstruction, preprocessing, and analysis steps were used on every data set, except that motion correction was performed using various configurations from each software package. Each package was studied using default parameters, as well as parameters optimized for speed and accuracy. Forty subjects performed a Go/No-go task (an event-related design that investigates inhibitory motor response) and an N-back task (a block-design paradigm investigating working memory). The human data were analyzed by extracting a set of general linear model (GLM)-derived activation results and comparing the effect of motion correction on thresholded activation cluster size and maximum t value. In addition, a series of simulated phantom data sets were created with known activation locations, magnitudes, and realistic motion. Results from the phantom data indicate that AFNI and SPM2 yield the most accurate motion estimation parameters, while AFNI's interpolation algorithm introduces the least smoothing. AFNI is also the fastest of the packages tested. However, these advantages did not produce noticeably better activation results in motion-corrected data from typical human fMRI experiments. Although differences in performance between packages were apparent in the human data, no single software package produced dramatically better results than the others. The "accurate" parameters showed virtually no improvement in cluster t values compared to the standard parameters. While the "fast" parameters did not result in a substantial increase in speed, they did not degrade the cluster results very much either. The phantom and human data indicate that motion correction can be a valuable step in the data processing chain, yielding improvements of up to 20% in the magnitude and up to 100% in the cluster size of detected activations, but the choice of software package does not substantially affect this improvement.
Zotero Collections:
Pages |