Displaying 1 - 2 of 2
An emotion-modulated acoustic startle paradigm for inducing positive and negative affect was used to address pregoal and postgoal affect. Participants played a computerized lottery task in which they chose digits that could match a subsequently displayed, random set of numbers. In the positive conditions, matches led to monetary rewards. In the negative condition, matches led to an aversive noise blast. In three experiments, we found eyeblink startle magnitude was potentiated just prior to feedback concerning reward outcome, suppressed following the feedback that a monetary reward was won, and potentiated when threatened with an aversive noise. When presented with a 0%, 45%, 90%, or 100% chance of winning, higher probabilities suppressed startle response after feedback whereas the 45% trials did not. These data indicate that postgoal positive affect (winning reward) reliably suppressed the startle response whereas pregoal positive affect did not.
Zotero Collections:
BACKGROUND: Hypothalamic-pituitary-adrenal (HPA) system activation is adaptive in response to stress, and HPA dysregulation occurs in stress-related psychopathology. It is important to understand the mechanisms that modulate HPA output, yet few studies have addressed the neural circuitry associated with HPA regulation in primates and humans. Using high-resolution F-18-fluorodeoxyglucose positron emission tomography (FDG-PET) in rhesus monkeys, we assessed the relation between individual differences in brain activity and HPA function across multiple contexts that varied in stressfulness.
METHODS: Using a logical AND conjunctions analysis, we assessed cortisol and brain metabolic activity with FDG-PET in 35 adolescent rhesus monkeys exposed to two threat and two home-cage conditions. To test the robustness of our findings, we used similar methods in an archival data set. In this data set, brain metabolic activity and cortisol were assessed in 17 adolescent male rhesus monkeys that were exposed to three stress-related contexts.
RESULTS: Results from the two studies revealed that subgenual prefrontal cortex (PFC) metabolism (Brodmann's area 25/24) consistently predicted individual differences in plasma cortisol concentrations regardless of the context in which brain activity and cortisol were assessed.
CONCLUSIONS: These findings suggest that activation in subgenual PFC may be related to HPA output across a variety of contexts (including familiar settings and novel or threatening situations). Individuals prone to elevated subgenual PFC activity across multiple contexts may be individuals who consistently show heightened cortisol and may be at risk for stress-related HPA dysregulation.
Zotero Collections: