Skip to main content Skip to search
Displaying 1 - 25 of 80

Pages

  • Page
  • of 4
To gain insight into the neurophysiological mechanisms involved in Zen meditation, we evaluated the effects of focused attention (FA) on breathing movements in the lower abdomen (Tanden) in novices. We investigated hemodynamic changes in the prefrontal cortex (PFC), an attention-related brain region, using 24-channel near-infrared spectroscopy during a 20-minute session of FA on Tanden breathing in 15 healthy volunteers. We found that the level of oxygenated hemoglobin in the anterior PFC was significantly increased during FA on Tanden breathing, accompanied by a reduction in feelings of negative mood compared to before the meditation session. Electroencephalography (EEG) revealed increased alpha band activity and decreased theta band activity during and after FA on Tanden breathing. EEG changes were correlated with a significant increase in whole blood serotonin (5-HT) levels. These results suggest that activation of the anterior PFC and 5-HT system may be responsible for the improvement of negative mood and EEG signal changes observed during FA on Tanden breathing.

Functional neuroimaging studies have implicated the fusiform gyri (FG) in structural encoding of faces, while event-related potential (ERP) and magnetoencephalography studies have shown that such encoding occurs approximately 170 ms poststimulus. Behavioral and functional neuroimaging studies suggest that processes involved in face recognition may be strongly modulated by socially relevant information conveyed by faces. To test the hypothesis that affective information indeed modulates early stages of face processing, ERPs were recorded to individually assessed liked, neutral, and disliked faces and checkerboard-reversal stimuli. At the N170 latency, the cortical three-dimensional distribution of current density was computed in stereotactic space using a tomographic source localization technique. Mean activity was extracted from the FG, defined by structure-probability maps, and a meta-cluster delineated by the coordinates of the voxel with the strongest face-sensitive response from five published functional magnetic resonance imaging studies. In the FG, approximately 160 ms poststimulus, liked faces elicited stronger activation than disliked and neutral faces and checkerboard-reversal stimuli. Further, confirming recent results, affect-modulated brain electrical activity started very early in the human brain (approximately 112 ms). These findings suggest that affective features conveyed by faces modulate structural face encoding. Behavioral results from an independent study revealed that the stimuli were not biased toward particular facial expressions and confirmed that liked faces were rated as more attractive. Increased FG activation for liked faces may thus be interpreted as reflecting enhanced attention due to their saliency.
Zotero Collections:

<p>Twenty-six younger (ages 18–36 years) and 19 older (ages 60–88 years) healthy right-handed men and women were tested for interhemispheric transfer by using visual evoked potentials lo laterally presented checkerboards. Interhemispheric transfer time (IHTT) was estimated by subtracting latencies for both P100 and N160 peaks of the waveform contralateral to the stimulus from the waveform ipsilateral to the stimulus for homologous sites. The quality of interhemispheric transfer was estimated by comparing peak-to-peak amplitudes for homologous sites. IHTT did not change across age, but there was a suppression of the waveform over the indirectly stimulated hemisphere in the older participants. The significance of this finding for age-related changes in functions mediated by the corpus callosum is discussed.</p>
Zotero Collections:

OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees. METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.

OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees. METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.
Zotero Collections:

This article presents an overview of the author's recent electrophysiological studies of anterior cerebral asymmetries related to emotion and affective style. A theoretical account is provided of the role of the two hemispheres in emotional processing. This account assigns a major role in approach- and withdrawal-related behavior to the left and right frontal and anterior temporal regions of two hemispheres, respectively. Individual differences in approach- and withdrawal-related emotional reactivity and temperament are associated with stable differences in baseline measures of activation asymmetry in these anterior regions. Phasic state changes in emotion result in shifts in anterior activation asymmetry which are superimposed upon these stable baseline differences. Future directions for research in this area are discussed.
Zotero Collections:

OBJECTIVE: The anterior cingulate cortex has been implicated in depression. Results are best interpreted by considering anatomic and cytoarchitectonic subdivisions. Evidence suggests depression is characterized by hypoactivity in the dorsal anterior cingulate, whereas hyperactivity in the rostral anterior cingulate is associated with good response to treatment. The authors tested the hypothesis that activity in the rostral anterior cingulate during the depressed state has prognostic value for the degree of eventual response to treatment. Whereas prior studies used hemodynamic imaging, this investigation used EEG. METHOD: The authors recorded 28-channel EEG data for 18 unmedicated patients with major depression and 18 matched comparison subjects. Clinical outcome was assessed after nortriptyline treatment. Of the 18 depressed patients, 16 were considered responders 4-6 months after initial assessment. A median split was used to classify response, and the pretreatment EEG data of patients showing better (N=9) and worse (N=9) responses were analyzed with low-resolution electromagnetic tomography, a new method to compute three-dimensional cortical current density for given EEG frequency bands according to a Talairach brain atlas. RESULTS: The patients with better responses showed hyperactivity (higher theta activity) in the rostral anterior cingulate (Brodmann's area 24/32). Follow-up analyses demonstrated the specificity of this finding, which was not confounded by age or pretreatment depression severity. CONCLUSIONS: These results, based on electrophysiological imaging, not only support hemodynamic findings implicating activation of the anterior cingulate as a predictor of response in depression, but they also suggest that differential activity in the rostral anterior cingulate is associated with gradations of response.
Zotero Collections:

Two reports in the last issue of this journal attempted to replicate aspects of our previous studies on anterior electroencephalogram (EEG) asymmetry, affective style, and depression. In this commentary, an overview is provided of our model of anterior asymmetries, affective style, and psychopathology. Emphasis is placed on conceptualizing the prefrontal and anterior temporal activation patterns within a circuit that includes cortical and subcortical structures. The causal status of individual differences in asymmetric activation in the production of affective style and psychopathology is considered. Major emphasis is placed on EEG methods, particularly the need for multiple assessments to obtain estimates of asymmetric activation that better reflect an individual's true score. Issues specific to each of the two articles are also considered. Each of the articles has more consistency with our previously published data than the authors themselves suggest. Recommendations are made for future research to resolve some of the outstanding issues.
Zotero Collections:

This article reviews the modern literature on two key aspects of the central circuitry of emotion: the prefrontal cortex (PFC) and the amygdala. There are several different functional divisions of the PFC, including the dorsolateral, ventromedial, and orbital sectors. Each of these regions plays some role in affective processing that shares the feature of representing affect in the absence of immediate rewards and punishments as well as in different aspects of emotional regulation. The amygdala appears to be crucial for the learning of new stimulus-threat contingencies and also appears to be important in the expression of cue-specific fear. Individual differences in both tonic activation and phasic reactivity in this circuit play an important role in governing different aspects of anxiety. Emphasis is placed on affective chronometry, or the time course of emotional responding, as a key attribute of individual differences in propensity for anxiety that is regulated by this circuitry.
Zotero Collections:

In this experiment, we combined the measurement of observable facial behavior with simultaneous measures of brain electrical activity to assess patterns of hemispheric activation in different regions during the experience of happiness and disgust. Disgust was found to be associated with right-sided activation in the frontal and anterior temporal regions compared with the happy condition. Happiness was accompanied by left-sided activation in the anterior temporal region compared with disgust. No differences in asymmetry were found between emotions in the central and parietal regions. When data aggregated across positive films were compared to aggregate negative film data, no reliable differences in brain activity were found. These findings illustrate the utility of using facial behavior to verify the presence of emotion, are consistent with the notion of emotion-specific physiological patterning, and underscore the importance of anterior cerebral asymmetries for emotions associated with approach and withdrawal.
Zotero Collections:

This study compared the asymmetry of different features of brain electrical activity during the performance of a verbal task (word finding) and a spatial task (dot localization) that had been carefully matched on psychometric properties and accompanying motor activity. Nineteen right-handed subjects were tested. EEG was recorded from F3, F4, C3, C4, P3, and P4, referred to both CZ and computer-derived averaged-ears references, and Fourier transformed. Power in the delta, theta, alpha, and beta bands was computed. There were significant Task X Hemisphere effects in all bands for CZ-referenced data and for the alpha and beta bands for ears-referenced data. The effects were always either greater power suppression in the hemisphere putatively most engaged in task processing or greater power in the opposite hemisphere. Correlations between EEG and task performance indicated that CZ-referenced parietal alpha asymmetry accounted for the most variance in verbal task performance. Power within individual hemispheres or across hemispheres was unrelated to task performance. The findings indicate robust differences in asymmetrical brain physiology that are produced by well-matched verbal and spatial cognitive tasks.
Zotero Collections:

The authors examined the hypothesis that rhesus monkeys with extreme right frontal electroencephalographic activity would have higher cortisol levels and would be more fearful compared with monkeys with extreme left frontal activity. The authors first showed that individual differences in asymmetric frontal electrical activity are a stable characteristic. Next, the authors demonstrated that relative right asymmetric frontal activity and cortisol levels are correlated in animals 1 year of age. Additionally, extreme right frontal animals had elevated cortisol concentrations and more intense defensive responses. At 3 years of age, extreme right frontal animals continued to have elevated cortisol concentrations. These findings demonstrate important relations among extreme asymmetric frontal electrical activity, cortisol levels, and trait-like fear-related behaviors in young rhesus monkeys.
Zotero Collections:

<p>Assessed the cortical concomitants of selective mode-specific attention in Ss differing in the capacity for sustained attentional involvement. 10 high- and 10 low-scoring Ss on the Tellegen Absorption Scale were required to (a) simply attend to either a randomly flashing light or a randomly produced tapping sensation on the forearm during one block of trials and to (b) count the flashes and the taps during another trial block. The EEG was recorded from the left occipital and left sensorimotor regions and was filtered for alpha activity and quantified on line. Selective mode-specific attention produced reliable shifts in cortical patterning between kinesthetic and visual attention trials. During the counting condition, high-scoring Ss showed significantly greater specificity in cortical patterning than did low-scoring Ss. This difference was primarily a function of high-scoring Ss' ability to inhibit activation in the occipital region while counting taps. Findings suggest that high scores on the Absorption scale are associated with a flexible attentional style and that, given the requisite task demands, attentionally absorbed Ss show greater mode-specific cortical patterning during selective attention than do low scorers. (36 ref)</p>
Zotero Collections:

<p>Forty-four right-handed participants were assessed on 2 occasions 6 weeks apart on electrophysiological measures of activation asymmetry derived from spectral estimates of electroencephalogram (EEG) alpha power in homologous scalp electrodes. Approximately 4 months following the final EEG assessment. participants were administered a dichotic listening CV-syllables task. Overall, participants exhibited a highly significant right-ear advantage. Differences among individuals in ear asymmetry were predicted by the earlier recorded electrophysiological data. Participants with greater activation in left-sided posterior temporal and parietal regions showed a larger right-ear advantage. In addition, a larger right-ear advantage was predicted by right-sided prefrontal activation. These data indicate that some of the variance in dichotic listening performance can be explained by dispositional activation asymmetries and is associated with a complex pattern of posterior and anterior activation asymmetries.</p>
Zotero Collections:

Thirty-two participants were tested for both resting electroencephalography (EEG) and neuropsychological function. Eight one-minute trials of resting EEG were recorded from 14 channels referenced to linked ears, which was rederived to an average reference. Neuropsychological tasks included Verbal Fluency, the Tower of London, and Corsi's Recurring Blocks. Asymmetries in EEG alpha activity were correlated with performance on these tasks. Similar patterns were obtained for delta and theta bands. Factor analyses of resting EEG asymmetries over particular regions suggested that asymmetries over anterior scalp regions may be partly independent from those over posterior scalp regions. These results support the notions that resting EEG asymmetries are specified by multiple mechanisms along the rostral/caudal plane, and that these asymmetries predict task performance in a manner consistent with lesion and neuroimaging studies.
Zotero Collections:

BACKGROUND: Studies using electroencephalogram (EEG) measures of activation asymmetry have reported differences in anterior asymmetry between depressed and nondepressed subjects. Several studies have suggested reciprocal relations between measures of anterior and posterior activation asymmetries. We hypothesized that depressed subjects would fail to show the normal activation of posterior right hemisphere regions in response to an appropriate cognitive challenge. METHODS: EEG activity was recorded from 11 depressed and 19 nondepressed subjects during the performance of psychometrically matched verbal (word finding) and spatial (dot localization) tasks. Band power was extracted from all epochs of artifact-free data and averaged within each condition. Task performance was also assessed. RESULTS: Depressed subjects showed a specific deficit in the performance of the spatial task, whereas no group differences were evident on verbal performance. In posterior scalp regions, nondepressed controls had a pattern of relative left-sided activation during the verbal task and relative right-sided activation during the spatial task. In contrast, depressed subjects failed to show activation in posterior right hemisphere regions during spatial task performance. CONCLUSIONS: These findings suggest that deficits in right posterior functioning underlie the observed impairments in spatial functioning among depressed subjects.
Zotero Collections:

BACKGROUND: The frontal lobe has been crucially involved in the neurobiology of major depression, but inconsistencies among studies exist, in part due to a failure of considering modulatory variables such as symptom severity, comorbidity with anxiety, and distinct subtypes, as codeterminants for patterns of brain activation in depression. METHODS: Resting electroencephalogram was recorded in 38 unmedicated subjects with major depressive disorder and 18 normal comparison subjects, and analyzed with a tomographic source localization method that computes the cortical three-dimensional distribution of current density for standard electroencephalogram frequency bands. Symptom severity and anxiety were measured via self-report and melancholic features via clinical interview. RESULTS: Depressed subjects showed more excitatory (beta3, 21.5-30.0 Hz) activity in the right superior and inferior frontal lobe (Brodmann's area 9/10/11) than comparison subjects. In melancholic subjects, this effect was particularly pronounced for severe depression, and right frontal activity correlated positively with anxiety. Depressed subjects showed posterior cingulate and precuneus hypoactivity. CONCLUSIONS: While confirming prior results implicating right frontal and posterior cingulate regions, this study highlights the importance of depression severity, anxiety, and melancholic features in patterns of brain activity accompanying depression.
Zotero Collections:

BACKGROUND: Asymmetric patterns of frontal brain activity and brain corticotropin-releasing hormone (CRH) systems have both been separately implicated in the processing of normal and abnormal emotional responses. Previous studies in rhesus monkeys demonstrated that individuals with extreme right frontal asymmetric brain electrical activity have high levels of trait-like fearful behavior and increased plasma cortisol concentrations. METHODS: In this study we assessed cerebrospinal fluid (CSF) CRH concentrations in monkeys with extreme left and extreme right frontal brain electrical activity. CSF was repeatedly collected at 4, 8, 14, 40, and 52 months of age. RESULTS: Monkeys with extreme right frontal brain activity had increased CSF CRH concentrations at all ages measured. In addition, individual differences in CSF CRH concentrations were stable from 4 to 52 months of age. CONCLUSIONS: These findings suggest that, in primates, the fearful endophenotype is characterized by increased fearful behavior, a specific pattern of frontal electrical activity, increased pituitary-adrenal activity, and increased activity of brain CRH systems. Data from other preclinical studies suggests that the increased brain CRH activity may underlie the behavioral and physiological characteristics of fearful endophenotype.
Zotero Collections:

Brain Respiration (BR)-training is a unique form of breathing exercise that develops potential ability by facilitating brain function. It is recognized as an effective method of improving the scholastic aptitude and emotional stability of children. The present study was designed to investigate the characteristics of the EEG during this training. Spectral analysis was used to examine the relative power in the EEG of 12 children while they practiced BR-training, and these were compared to those of 12 matched controls. BR-trainees showed a lower θ rhythm than the controls before the training session began and lower β[sub 2] power before, during and after the session. In contrast, the BR subjects showed greater relative α[sub 1] power than the controls in the left frontal region during BR-training, which persisted throughout the BR-training schedule. There is evidence that decreased θ and β waves may be correlated with emotional maturation, whilst increased α waves are associated with educational achievement. These findings enhance our understanding of the neurophysiological basis of the effects of BR-training upon emotion and maturation.

Electroencephalographic (EEG) recordings from 19 scalp recording sites were used to differentiate among two posited unique forms of mediation, concentration and mindfulness, and a normal relaxation control condition. Analyzes of all traditional frequency bandwidth data (i.e., delta 1–3 Hz; theta, 4–7 Hz; alpha, 8–12 Hz; beta 1, 13–25 Hz; beta 2, 26–32 Hz) showed strong mean amplitude frequency differences between the two meditation conditions and relaxation over numerous cortical sites. Furthermore, significant differences were obtained between concentration and mindfulness states at all bandwidths. Taken together, our results suggest that concentration and mindfulness “meditations” may be unique forms of consciousness and are not merely degrees of a state of relaxation.

Three experiments were performed testing the effects of a variety of impedance cardiograph electrode types and recording arrangements on recorded electroencephalography (EEG) using either a monopolar single-ear reference or a physically linked ears reference. EEG was recorded either alone or concurrently with an impedance cardiograph. When the cardiograph was recorded using a spot electrode for the top current-inducing electrode, there was an overall decrease in power density of the EEG, and this effect was dependent on the location of the recording electrode. This effect was diminished when the top cardiograph spot electrode was replaced by a mylar-coated neck band electrode and EEG was recorded using a monopolar, single-ear reference. However, there tended to be an overall increase in log power density of the EEG in each frequency band below 60 Hz when less technologically advanced EEG amplifiers were used. This effect was diminished if the EEG was recorded using a physically linked ears reference. Recommendations for the concurrent recording of EEG and impedance cardiography are discussed.
Zotero Collections:

In rodents, theta rhythm has been linked to the hippocampal formation, as well as other regions, including the anterior cingulate cortex (ACC). To test the role of the ACC in theta rhythm, concurrent measurements of brain electrical activity (EEG) and glucose metabolism (PET) were performed in 29 subjects at baseline. EEG data were analyzed with a source localization technique that enabled voxelwise correlations of EEG and PET data. For theta, but not other bands, the rostral ACC (Brodmann areas 24/32) was the largest cluster with positive correlations between current density and glucose metabolism. Positive correlations were also found in right fronto-temporal regions. In control but not depressed subjects, theta within ACC and prefrontal/orbitofrontal regions was positively correlated. The results reveal a link between theta and cerebral metabolism in the ACC as well as disruption of functional connectivity within frontocingulate pathways in depression.
Zotero Collections:

<p>This study was designed to test the hypothesis that Japanese subjects exhibit different patterns of resting EEG asymmetry compared with Westerners. EEG was recorded from the left and right temporal and parietal scalp regions in bilingual Japanese and Western subjects during eyes-open and eyes-closed rest periods before and after the performance of a series of cognitive tasks. Alpha activity was integrated and digitized. Japanese subjects were found to exhibit greater relative right-sided parietal activation during the eyes closed condition. This difference was found to be a function of greater left hemisphere activation among the Westerners. Various possible contributors to this cross-cultural differences are discussed.</p>
Zotero Collections:

Facial expression, EEG, and self-report of subjective emotional experience were recorded while subjects individually watched both pleasant and unpleasant films. Smiling in which the muscle that orbits the eye is active in addition to the muscle that pulls the lip corners up (the Duchenne smile) was compared with other smiling in which the muscle orbiting the eye was not active. As predicted, the Duchenne smile was related to enjoyment in terms of occurring more often during the pleasant than the unpleasant films, in measures of cerebral asymmetry, and in relation to subjective reports of positive emotions, and other smiling was not.
Zotero Collections:

Pages

  • Page
  • of 4